
新型网络数据挖掘

Haipeng Dai (戴海鹏)

State Key Laboratory for Novel Software Technology,
Nanjing University, China.

2021.8.19

1902 1920 1928 1952 2009

Outline PART 01

PART 02

Background

Ming Items with Complex Pattern
- Persistent Items

PART 03 Utilizing Item Inherent Information
- Negative Items and Distribution

01/ Background

"Internet of Things (IoT) active device connections installed base worldwide,"
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide.

01/ Background

“Global machine-to-machine (M2M) data traffic from 2014 to 2019,"
https://www.statista.com/statistics/267310/data-volume-of-non-internet-ip-traffic-by-category.

Massive data
vs.

Limited storage

https://www.statista.com/statistics/267310/data-volume-of-non-internet-ip-traffic-by-category

01/ Items Show Complex Pattern

• Frequent Items
Charikar M, et al. Finding frequent items in data streams (ICALP 2002).

• Items with Heavy Change
Monika R Henzinger. Algorithmic challenges in web search
engines (Internet Mathematics 2004)

• Persistent Items
Haipeng Dai, et al. Finding Persistent Items in Data Streams (VLDB 2017)

• Significant Items
Tong Yang, et al. Finding Significant Items in Data Streams (ICDE 2019)

• … …

01/ Challenge - I

Compact data
structure

Data
recording

…

High-speed network
data stream

Challenge：How to design compact data structures with limited
space to process, store and query the items with complex pattern
in data stream efficiently?

01/ Items Inherent Information

Disk

Level1

Level2

Level
3

LSM-based k-v stores

Popular
files

Internet traffics

Items with Specific Distribution

Availability of Negative (high-cost) Items

 Publicly available, like the online
malicious IP address statistics for
intrusion detection.

 Obtained by cache, most web servers can
cache high-cost query records to improve
the system performance.

Items are Skewed

01/ Challenge - II
Recently Proposed Learned Based Models is Impractical Now

Learned
model

• Prolonged training and

query latency

• Relying on semantic

knowledge of data

Challenge：How to design a smart data structure which can take
full advantage of the information of workloads or dataset while
achieving high performance.

Outline PART 01

PART 02

Background

Ming Items with Complex Pattern
- Persistent Items

PART 03 Utilizing Item Inherent Information
- Negative Items and Distribution

02/ Complex Pattern Identification

Finding Persistent Items in Data
Streams (VLDB’17)

Haipeng Dai1, Muhammad Shahzad2, Alex X. Liu1, and Yuankun Zhong1.

1 State Key Laboratory for Novel Software Technology,
Nanjing University, China.

2 North Carolina State University, USA.

 Given a stream in T consecutive equally sized measurement periods, find those items that
occur in most measurement periods (≥ a threshold Tth).

 Given a stream of N items, find those that occur most frequently.

02/ Frequent Item vs. Persistent Item
Frequent Item

Persistent Item

02/ Persistent Item
Potential Applications for Persistent Items Identification

• Stealthy DDoS attacks

• Stealthy port scanning attacks

• Communication between a bot and
its C&C server

• Click-fraud detection

02/ Limitations of Prior Art
Prior Approach 1: Counter-based Algorithms

• Lossy Counting [Manku et al VLDB 2002]

• Space Saving [Metwally et al Database
Theory-ICDT 2005]

• Limitations: low memory efficiency; cannot
eliminate duplicate items within a
measurement period

02/ Limitations of Prior Art
Prior Approach 2: Sketch-based Algorithms

• C-sketch [Charikar et al Automata, Languages and Programming 2002]

• CM-sketch [Cormode et al Journal of Algorithms 2005]

• Limitations: low memory efficiency; cannot eliminate duplicate items within a
measurement period

1
j

H

0 1 K-1…

…
…

+Ct

+Ct

+Ct

hj(k)

hH(k)

h1(k)

Key t

02/ Limitations of Prior Art
Prior Approach 3: Invertible Bloom Filter

• IBF [Eppstein et al SIGCOMM 2011]: store
set ID and auxiliary info.

• Limitations: low memory efficiency;
cannot eliminate duplicate items within a
measurement period

A

idSum ⊕ A
hashSum ⊕ H(A)

count++

idSum ⊕ A
hashSum ⊕ H(A)

count++

idSum ⊕ A
hashSum ⊕ H(A)

count++

Hash1 Hash2 Hash3

B C

IBF:

02/ Motivation
A naïve approach for persistent items identification

T1 T2 T3 T4 T5

Data
Structure

(Store
Whole ID

Information)

Remove
Duplicate

X 4 X 3 X 5 X 2

Collect &
Analysis

(Tth=4)

Memory inefficiency!
Store whole IDs for persistent/non-persistent items many

times, but only one is needed for each persistent item!

02/ Motivation
Our solution: Persistent items Identification schemE (PIE)

T1 T2 T3 T4 T5

Remove
Duplicate

Data
Structure

(Store
Partial ID

Information)

X 4 ? X 5

Collect &
Recover &
Analysis

?(Tth=4)

02/ Key Idea of PIE
Our Solution: Persistent items Identification schemE (PIE)

Questions:
• How to store and recover ID information?

Encode + Decode

• How to pinpoint the stored information for the same item ID in the data
structure without the knowledge of the item ID?

Position Info. + Hash-print Info.

Introduction: encode k symbols into potentially limitless encoding symbols

Advantages:
Linear time encoding and decoding speed
High decoding success probability (or low decoding failure probability)
…

Decoding failure probability

02/ Key Idea of PIE

02/ Space-Time Bloom Filter (STBF)
 Structure: an array Ci of cells with uniform length

 Structure of a cell: (Flag, Raptor codes, Hash-print)

 Cell status: empty, singleton, collided

02/ Recording Phase of STBF

000000 000000 000000 000000 000000 000000

 E.g.:

empty empty empty empty empty empty

02/ Recording Phase of STBF
 E.g.:

e1

1 || CiR[x1] ||
CiP[x1]

000000 1 || CiR[x3] ||
CiR[x3]

1 || CiR[x4] ||
CiR[x4]

000000 000000

h3(e1)%m h2(e1)%mh1(e1)%m

singleton singleton singleton

02/ Recording Phase of STBF
 E.g.:

e2

1 || CiR[x1] ||
CiP[x1]

000000 1 || CiR[x3] ||
CiR[x3]

011111 1 || CiR[x5] ||
CiP[x5]

1 || CiR[x6] ||
CiP[x6]

h3(e2)%mh2(e2)%mh1(e2)%m

singleton singletoncollided

02/ Recording Phase of STBF
 E.g.:

e1

1 || CiR[x1] ||
CiP[x1]

000000 1 || CiR[x3] ||
CiR[x3]

011111 1 || CiR[x5] ||
CiP[x5]

1 || CiR[x6] ||
CiP[x6]

h3(e1)%m h2(e1)%mh1(e1)%m

duplicate

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 1 with 1 group

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 4 with 1 group

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 5 with 1 group

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 7 with 3 groups

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 8 with 1 group

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 9 with 1 group

02/ Identification Phase of STBF
Process cell lines one by one, cluster stored Raptor codes into different groups in
terms of cell lines and hash-prints, then decode codes in the same group

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 10 with 1 group

• False Negative Rate (FNR): the rate of failing to recover the IDs of
persistent items

• Two possible cases for FNR:
– Hash-mapping Collision: one or more cells are collided and the

Raptor codes are lost
 easy to analyze

– Hash-print Collision: some other items happen to have the same
hash-prints with the considered persistent item, and their
introduced Raptor codes make the recovering fail

 hard to analyze

02/ Performance Analysis - FNR

• Hash-print Collision analysis for FNR: need to
enumerate all possibilities of collisions

• E.g.:

1 cell hash-
print collision (1) (1) (1)or or

2 cell hash-
print collision (2) (2) (2)or or

or (1 +1) or (1 +1)…………

02/ Performance Analysis – FNR(cont’)

• Our solution: two-partite approximation
– Observation: distributions of item occurrences in practical applications typically follows Zipf or

“Zipf-like” skewed distribution

Item occurrences ≈ 1

Analysis based on
binomial distribution

Item occurrences ≈ sufficiently
large to cause recovering failure

Analysis based on
geometric distribution

02/ Performance Analysis – FNR(cont’)

• False Positive Rate (FPR): the rate of wrongly recovering the IDs of non-
persistent items

• Two possible cases for FPR:
– Phantom items: the recovered ID does not actually belong to any of

the observed items during T measurement periods
– Non-persistent items: the recovered ID is exactly the same as some

other non-persistent item

• We derive an upper bound for FPR considering both cases

02/ Performance Analysis – FPR

• Challenges:
– Complicated mathematical expression of FNR
– Optimization with three parameters (r, p, and m)

• Solutions:
– Propose an approximation method to simplify the

expression of FNR
– Find the condition under which FNR is minimized if

any parameter out of r, p, and m is fixed, and
therefore, simplify the optimization

02/ Parameter Optimization for FNR

• Item Traces:
– CHIC: a backbone header trace
– ICSI: an enterprise network traffic trace
– DC: a data center traffic trace collected at a university data center

Trace Duration # pkts # flows

CHIC 6 min 25.3 M 101,374

ICSI 1 hour 1.49 M 8,797

DC 1 hour 8.09 M 10,289

02/ Evaluation Setup

• Parameter Settings:
– # of measurement periods T : 60
– # of mapping hash functions k : 3
– Mingling threshold gT : 4
– Memory for STBF M : 600Kb (CHIC), 100Kb (ICSI), 300 Kb (DC)

• Evaluation metrics:
– False Negative Rate
– False Positive Rate

• Side-by-side comparison:
– CM sketch
– IBF

02/ Evaluation Setup

• Our results show that the average FNR of PIE calculated from
simulations is always less than the maximum desired FNR.

Empirical false negative rate vs. theoretical false negative rate when Tth = 40

Empirical false negative rate vs. theoretical false negative rate when Tth = 50

02/ False Negative Rate

• Our results show that the average FNR of PIE is almost twice an order of
magnitude smaller than the FNR of IBF.

False negative rate when Tth = 40

02/ False Negative Rate

• Our results show that FPR of PIE is at least 426.1 times less than the
FPR of CM sketch.

False positive rate when Tth = 40

02/ False Positive Rate

• Propose the notion of persistent item and define the problem of persistent
items identification

• Propose the Space-Time Bloom Filter data structure for persistent items
identification

• Analyze the False Negative Rate and False Positive Rate of PIE, and study
parameter optimization

• Conduct numerical evaluations based on real traces to validate the
performance of PIE

02/ Conclusion

 [VLDB'17] Haipeng Dai, Muhammad Shahzad, Alex X. Liu and
Yuankun Zhong. "Finding Persistent Items in Data Streams". (CCF A)

 [TON'19] Haipeng Dai, Muhammad Shahzad, Alex X. Liu, Meng Li and
Yuankun Zhong. "Identifying and Estimating Persistent Items in Data
Streams". (CCF A)

02/ Related Publications

 Our VLDB paper “Finding Persistent Items in Data Streams” has
been cited by 10 CCF A conferences and journals

Networking

SIGCOMM CCF A
TON CCF A

INFOCOM CCF A
TMC CCF A

Database
SIGMOD CCF A

ICDE CCF A
VLDBJ CCF A

Parallel/distributed
Computing TPDS CCF A

Data Mining
SIGKDD CCF A

TKDE CCF A

02/ Citation

02/ Complex Pattern Identification

Finding Persistent Items in Distributed Datasets
(INFOCOM’18)

Haipeng Dai1, Meng Li1, and Alex X. Liu1.

1 State Key Laboratory for Novel Software Technology,
Nanjing University, China.

Persistent Item In Data Streams (Dynamic)

Persistent Item In Distributed Datasets (Static)

Dataset #1 Dataset #2 Dataset #n

02/ Streams vs. Distributed Datasets

 Given T datasets, find those items in most datasets (≥ a threshold Tth).

 A stream in T equally sized measurement periods, find those items in most measurement
periods (≥ a threshold Tth).

 Distributed port scanning attacks

 Distributed Intrusion Detection

 Distributed DDoS Attack Detection

02/ Potential Applications

• Related Work #1: Frequent items identification in a distributed
environment

– Master- slave model: [B.Babcock et al Sigmod 2003] [Cao et al PODC 2004][Dai et al INFOCOM 2016]
– Hierarchical model: [A. Manjhi et al ICDE 2005] [Li et al ICDCS 2008]
– Decentralized model: [B. Lahiri et al JPDC 2010]
– Limitation: poor performance in terms of communication cost

• Related Work #2: Cooperative monitoring systems
– Specific aggregation functions: [G.Cormode et al TODS 2008] [S. Agrawal et al ICDE 2007] [C.

Arackaparambil et al ICALP 2009] [L.Huang et al INFOCOM 2007] [M.Gabel et al IPDPS 2014]
– Multi-set joining problem: [L. F. Mackert et al Sigmod 1986] [J.K. Mulin et al TSE 1990] [Z.Cai et al ICNP

2015]
– Limitation: focus on specific aggregation or priori knowledge is needed

02/ Related Works

• A naïve approach for persistent items identification

Data
Structure

(Store
Whole ID

Information)

X 4 X 3 X 5 X 2

Collect &
Analysis

(Tth=4)

Space inefficiency!
Store whole IDs for persistent/non-persistent items many times,

but only one is needed for each persistent item!

Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

02/ Motivation

• Our Solution: DIStributed PERSistent items SchemE (DISPERSE)

Remove
Duplicate

Store Partial
ID Information

in space-
compact data

structure

X 4 ? X 5

Collect &
Recover &
Analysis

?(Tth=4)

Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

02/ Key Idea of DISPERSE

• Structure: an array Ci of bucket, and each bucket consists of w slots.

• Space-compact data structure.

• Structure of a slot: (Hash-print, Raptor codes)

Name (notation) Length Description

Raptor Codes : CiR[x] r Encoded codes for ID recovering, same
for all mapped slots for an item, but
different for different datasets.

Hash-print: CiP[x] p Fingerprint-like info. generated by
hashing for an item, same for mapped
slots of an item.

02/ Coding Cuckoo filter (CCF)

• Inserting item into CCF
– Each item has two associated candidate buckets.
– Each item is to be placed in a slot.

𝑝𝑝-bit
Fingerprint

𝑟𝑟-bit
Raptor codes

An example CCF with 5 buckets composed of 3 slots

Key Problem: How to minimize the storage space, i.e., number of slots?

02/ Recording Phase of CCF

• Problem Formulation: Min-max Cost Two-degree
Matching (MCTM) Problem.

• Solution: Relationship Graph based Algo.
– The proposed algorithm is proved to be optimal
– O(|L| 2 + |L| · |R|) time complexity

02/ Storage Space Optimization of CCF

 Isolate Raptor codes for different items
– Align all CCFs and buckets of the same column are called bucket line
– Divide the slots in each bucket line into groups according to fingerprints

CCF 1

CCF 2

CCF 3

CCF 4

1 group 3 groups

bucket line 3 bucket line 7

02/ Decoding Phase of CCF

 Isolate Raptor codes for different items
– Combine a group in a certain bucket line with another group having the same fingerprint at the

associated bucket line
– Decode Item IDs from the Raptor codes in global group

CCF 1

CCF 2

CCF 3

CCF 4

1 group 3 groups

Global group

02/ Decoding Phase of CCF

 Successfully recovering a persistent item
– The probability of an item free from fingerprint mingling is given by 𝑃𝑃𝑚𝑚𝑚𝑚
– The probability of mingled item happens to have the same Raptor codes make items

survive to be recovered is given by 𝑃𝑃𝑚𝑚𝑚𝑚
– The probability of successfully recovering an persistent item is 𝑃𝑃𝑚𝑚𝑠𝑠, where 𝑤𝑤𝑡𝑡 denote the

percentage of items with 𝑡𝑡 occurrences
– The probability of failing to recover a persistent item is given by 𝑃𝑃𝐹𝐹𝐹𝐹

02/ Analysis – False Negative Rate

• Identifying a false persistent item
– Due to mingling
– The probability of recovering a false persistent item is given by 𝑃𝑃𝐹𝐹𝐹𝐹

02/ Analysis – False Positive Rate

 Parameter Settings:
– # of datasets T : 60
– # Threshold 𝑇𝑇𝑡𝑡𝑡: 40 and 50
– Data trace: CAIDA

 Evaluation metrics:
– False Negative Rate (FNR)
– False Positive Rate (FPR)
– Compression ratio

 Side-by-side comparison:
– Bloom
– kBF
– IBF

02/ Evaluation

Space Compression Ratio vs. FNR

(a) CCF (b) Bloom

(d) IBF(c) kBF

02/ Compression Ratio vs. FNR
 Our results show that our scheme can achieve 7.9, 5.7, and 6.6 times performance

gains, respectively, in terms of compression ratio.

(a) CCF (b) Bloom

Compression Ratio vs. FPR

 Our results show that only Bloom achieves a better FPR than CCF, which is,
however, at the cost of hardly recovering any items.

02/ Compression Ratio vs. FPR

• Propose the first solution for finding persistent items among distributed
datasets

• Propose to encode item ID to cut down the communication cost

• Propose an probabilistic data structure to store encoded items

• Conduct solid simulations for evaluation

02/ Conclusion

 [INFOCOM'18] Haipeng Dai, Meng Li and Alex X. Liu. "Finding Persistent
Items in Distributed Datasets". (CCF A)

 [TON'20] Haipeng Dai, Meng Li, Alex X. Liu, Jiaqi Zheng and Guihai Chen.
"Finding Persistent Items in Distributed Datasets". (CCF A)

02/ Related Publications

Outline PART 01

PART 02

Background

Ming Items with Complex Pattern
- Persistent Items

PART 03 Utilizing Item Inherent Information
- Negative Items and Distribution

03/ Utilizing Item Information

Hash Adaptive Bloom Filter (ICDE’21)

Rongbiao Xie1, Meng Li1, Zheyu Miao2,3, Rong Gu2*, He Huang3,
Haipeng Dai1* and Guihai Chen1.

1 State Key Laboratory for Novel Software Technology, Nanjing University, China.
2 Zhejiang University

3 Alibaba Group
4 Soochow University

03/ Motivation

Membership testing problem is a fundamental problem
in numerous applications.

Big Data Database Network Security

Best solution: filters

• High accuracy
• Memory efficient
• Fast construction and query

000 11 1

ee ee

03/ Background – Bloom Filter

000 00100100010 …
m bits

Bloom filter

Insertion
e

00000000 …
m bits

Bloom filter

Query Positive key Negative key

03/ Background

Availability of Negative Keys

 Publicly available, like the online malicious IP address
statistics for intrusion detection.

 Obtained by cache, for LSM-based k-v stores, frequently failed queries
with heavy I/O overhead can be cached to reduce extra disk accesses.

RocksDB

03/ Background

Disk

Level1

Level2

Level3

LSM-based k-v stores

Popular
files

Internet traffics

Further Scenario：Negative Keys Follow a Skewed Cost Distribution

03/ Prior filters’ limitations

For Bloom filter, Xor filter
- Insensitivity for negative keys and the cost distribution

For Learning-based Filters, like Learned Bloom filter
- The accuracy of learned model is hard to be guaranteed
- The training and query phase is much more expensive

No

Yes

Yes

No

Positive

Negative

PositiveLearned
model

Bloom
filter

e

For Cost-based Filters, like Weighted Bloom filter
- Elements need to carry their cost information all the time

03/ Design goal

Adaptability of Filters
- Sensitive to the negatives keys.
- Learning to be adaptive to the skewed cost distribution
- Applicable to various data like Bloom filter

Construction and query speed
- Approaching the speed of Bloom filter

e
build

mistaken

03/ Rationale

Key Idea: Customizing the hash functions for positive keys to avoid
conflicting with high-cost negative keys.

Procedure:

Bloom
filter

e
Adjust hash functions

of conflicting

with

e

e
Negative Keys

e

e

e

Positive Keys

e

e e

False positives

e ee

High cost

Store ajusted
Hash functions

h9
{h4, h2, h7}

0, 00, h20, 0 1, h70, h20, h4

h2

h4

f
{h7, h4, h2}

{h7, h4, h2}

03/ Architecture - HashExpressor
Data Structure

…
ω cells

endbit hashindex • endbit: whether the query comes from an
adjusted positive key

• hashindex: The index of a hash function

Insertion Query

…

e

{h7, h4, h2}

{h7, h4, h2}

0, 00, h20, 0 1, h70, h20, h4 0, 00, h9 …

e

f

h4

h2

Default hash
functions

Zero FNR
Small FPR

Phase-I

No

Yes

④ Yes

Positive key

② No

03/ Architecture - HABF
Zero-FNR Query

Bloom filter

e

① Initial hash functions

HashExpressor

③ Customized hash functions

② Yes
④ No

Negative key

Adjust hash functions

of conflicting

with

e

e

Two-phase Construction

HashExpressor

Can be
inserted

Phase-II

Correct negative Keys

03/ Architecture - HABF

How to choose to be adjusted, further which hash functions

should we adjust, and adjust to which?

e

• Two runtime auxiliary structures

…m units

singleflag e

…m buckets

e

Structure V Structure Γ

e e

h4

Candidate hash functions

h1 h3h2

Structure V

03/ Case Study

e60， …

e

e71， e50，

e7

h4 , h5 , h6

000 11 1 00000000 …

Bloom filter

Default initial hash functions h1 , h2 , h3

{h1, h3, h4}

{h1, h3, h5}

03/ Case Study

… Structure Γe9 e4 e2 e8

h1 h3h2

Structure Ve60， …

e

e71， e50，

e7

Candidate hash functions h4 , h5 , h6Default initial hash functions h1 , h2 , h3

h5 h6

No confliction e2 is conflicted and
cost(e2) > cost(e)

03/ Experiments - Setup
Dataset:

Dataset Positive keys Negative keys

Shalla 1,491,178 1,435,527

YCSB 12,500,611 11,574,201

- Shalla’s Blacklists: A URL dataset with evident characteristics

- YCSB: A benchmark for databases, and we modified its uniform generator to generate

24,074,812 keys

03/ Experiments - Setup

Metrics:

- Weighted FPR =
Overall cost of false positives

Overall cost of negative keys

Comparison algorithms:

- Non-learned Filters: BF, Xor, WBF

- Learned Filters: LBF, Ada-BF, SLBF

03/ Under Uniform Distribution

- When keys have evident characteristics, HABF will use less space if a

low weighted FPR is required.

- When the key schema is approximately random, HABF has the

smallest weighted FPR for all our space settings.

03/ Under Skewed Distribution

- HABF always has the smallest weighted FPR under all the space settings

03/ Effect of Skewness

- HABF and f-HABF continue to decrease

steadily but for BF and Xor, the weighted

FPRs show great fluctuations.

03/ Construction and Query Time

- The construction time of HABF and f-HABF are around 19.0× and 2.7×

larger than that of BF, respectively.

- The query time of HABF and f-HABF are around 5.4× and 1.2× than that of

BF, respectively.

03/ Conclusion

• We study how to improve the performance when
some negative keys and their costs are available

• We propose a novel framework named HABF to
customize the hash functions for positive keys to avoid
high-cost negative keys

• Experimental results: the performance of our algorithm
is much better than related algorithms

 [ICDE'21] Rongbiao Xie, Meng Li, Zheyu Miao, Rong Gu*, He Huang,
Haipeng Dai* and Guihai Chen. "Hash Adaptive Bloom Filter". (CCF A)

 [VLDBJ] Meng Li, Rongbiao Xie, Deyi Chen, Rong Gu, He Huang, Haipeng
Dai*, Wanchun Dou and Guihai Chen*. "A Pareto Optimal Filter Family
with Hash Adaptivity". (CCF A, under review)

03/ Related Publications

Haipeng Dai (戴海鹏)

Homepage: http://cs.nju.edu.cn/daihp/

Email: haipengdai@nju.edu.cn

Phone: 18951991961

Q & A

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	Finding Persistent Items in Data �Streams (VLDB’17)
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	Finding Persistent Items in Distributed Datasets (INFOCOM’18)
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	幻灯片编号 61
	幻灯片编号 62
	幻灯片编号 63
	Hash Adaptive Bloom Filter (ICDE’21)
	幻灯片编号 65
	幻灯片编号 66
	幻灯片编号 67
	幻灯片编号 68
	幻灯片编号 69
	幻灯片编号 70
	幻灯片编号 71
	幻灯片编号 72
	幻灯片编号 73
	幻灯片编号 74
	幻灯片编号 75
	幻灯片编号 76
	幻灯片编号 77
	幻灯片编号 78
	幻灯片编号 79
	幻灯片编号 80
	幻灯片编号 81
	幻灯片编号 82
	幻灯片编号 83
	幻灯片编号 84
	幻灯片编号 85

